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Sequence of Presentation.

» A very pragmatic, practical basis to the talk.

» An introduction: why | am here.

» Why do we need & how do we manage multiple threads?
» Propose a DSEL to enable parallelism.

» Describe the grammar, give resultant theorems.

» Examples, and their motivation.

» Discussion.
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Introduction.
Why yet another thread-library presentation?
» Because we still find it hard to write multi-threaded programs
correctly.

» According to programming folklore.

» We haven't successfully replaced the von Neumann
architecture:

» Stored program architectures are still prevalent.

» Companies don't like to change their compilers.
> People don't like to recompile their programs to run on the
latest architectures.

» The memory wall still affects us:

» The CPU-instruction retirement rate, i.e. rate at which
programs require and generate data, exceeds the the memory
bandwidth - a by product of Moore's Law.

» Modern architectures add extra cores to CPUs, in this
instance, extra memory buses which feed into those cores.
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A Quick Review of Related Threading Models:
» Compiler-based such as Erlang, UPC or HPF.

» Corollary: companies/people don't like to change their
programming language.
» Profusion of library-based solutions such as Posix Threads and
OpenMP, Boost. Threads:
» Don't have to change the language, nor compiler!
» Suffer from inheritance anomalies & related issue of entangling
the thread-safety, thread scheduling and business logic.
» Each program becomes bespoke, requiring re-testing for

threading and business logic issues.
» Debugging: very hard, an open area of research.

» Intel's TBB or Cilk.

» Have limited grammars: Cilk - simple data-flow model, TBB -
complex, but invasive API.
» The question of how to implement multi-threaded debuggers
correctly an open question.

» Race conditions commonly “disappear” in the debugger...
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The DSEL to Assist Parallelism.

Should have the following properties:

>

Target general purpose threading, defined as scheduling where
conditionals or loop-bounds may not be computed at
compile-time, nor memoized.

Support both data-flow and data-parallel constructs succinctly
and naturally within the host language.

Provide guarantees regarding:

» deadlocks and race-conditions,
» the algorithmic complexity of any parallel schedule
implemented with it.

Assist in debugging any use of it.

Example implementation uses C++ as the host language, so
more likely to be used in business.
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Grammar Overview: Part 1: thread-pool-type.

thread-pool-type — thread_pool work-policy size-policy pool-adaptor

P A thread_pool would contain a collection of threads, which may differ from the number of
physical cores.

work-policy — worker_threads_get_work | one_thread_distributes

P The library should implement the classic work-stealing or master-slave work
sharing algorithms.

size-policy — fixed_size | tracks_to_max | infinite

P The size-policy combined with the threading-model could be used to
optimize the implementation of the thread-pool-type.
pool-adaptor — joinability api-type threading-model priority-modegpt comparatorept
Jjoinability — joinable | nonjoinable
P The joinability type has been provided to allow for optimizations of the
thread-pool-type.
api-type — posix_pthreads | IBM_cyclops | ... omitted for brevity
threading-model — sequential_mode | heavyweight_threading | lightweight_threading
P This specifier provides a coarse representation of the various
implementations of threading in the many architectures.
priority-mode — normal_fifoy_r | prioritized_queue
P The prioritized_queue would allow specification of whether certain

instances of work-to-be-mutated could be mutated before other instances
according to the specified comparator.

comparator — std: :lessdef

P A binary function-type that would be used to specify a strict weak-ordering
on the elements within the prioritized_queue.
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Grammar Overview: Part 2: other types.

The thread-pool-type should define further terminals for programming convenience:

execution_context: An opaque type of future that a transfer returns and a proxy to the result_type
that the mutation creates.

P Access to the instance of the result_type implicitly causes the calling
thread to wait until the mutation has been completed: a data-flow
operation.

P Implementations of execution_context must specifically prohibit: aliasing
instances of these types, copying instances of these types and assigning
instances of these types.

joinable: A modifier for transferring work-to-be-mutated into an instance of
thread-pool-type, a data-flow operation.

nonjoinable: Another modifier for transferring work-to-be-mutated into an instance of
thread-pool-type, a data-flow operation.

safe-colln — safe_colln collection-type lock-type

P This adaptor wraps the collection-type and lock-type in one object; also providing some
thread-safe operations upon and access to the underlying collection.

lock-type — critical_section_lock_type | read_write | read_decaying write

P A critical_section_lock_type would be a single-reader, single-writer lock,
a simulation of EREW semantics.

P A read_write lock would be a multi-readers, single-write lock, a simulation
of CREW semantics.

P A read_decaying_write lock would be a specialization of a read_write lock
that also implements atomic transformation of a write-lock into a read-lock.

collection-type: A standard collection such as an STL-style list or vector, etc.
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Grammar Overview: Part 3: Rewrite Rules.

Transfer of work-to-be-mutated into an instance of thread-pool-type has been defined as follows:

transfer-future — execution-context-resultopt thread-pool-type transfer-operation

execution-context-result — execution_context <<
P An execution_context should be created only via a transfer of
work-to-be-mutated with the joinable modifier into a thread_pool defined
with the joinable joinability type.
It must be an error to transfer work into a thread_pool that has been
defined using the nonjoinable type.
An execution_context should not be creatable without transferring work, so
guaranteed to contain an instance of result_type of a mutation, implying
data-flow like operation.
transfer-operation — transfer-modifier-operationopt transfer-data-operation
transfer-modifier-operation — << transfer-modifier
transfer-modifier — joinable | nonjoinable

transfer-data-operation — << transfer-data

transfer-data — work-to-be-mutated | data-parallel-algorithm
The data-parallel-algorithms have been defined as follows:
data-parallel-algorithm — accumulate | ... omitted for brevity
P The style and arguments of the data-parallel-algorithms should be similar to

those of the STL. Specifically they should all take a safe-colln as an
argument to specify the range and functors as specified within the STL.
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Properties of the DSEL.

Due to the restricted properties of the execution contexts and the
thread pools a few important results arise:

1. The thread schedule created is only an acyclic, directed graph:
a tree.

2. From this property we have proved that the schedule
generated is deadlock and race-condition free.

3. Moreover in implementing the STL-style algorithms those
implementations are efficient, i.e. there are provable bounds
on both the execution time and minimum number of
processors required to achieve that time.
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Initial Theorems (Proofs in the Paper).

1. CFG is a tree:

Theorem

The CFG of any program must be an acyclic directed graph
comprising of at least one singly-rooted tree, but may contain
multiple singly-rooted, independent, trees.

2. Race-condition Free:

Theorem
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of race-conditions.

3. Deadlock Free:

Theorem
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of deadlocks.
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Final Theorems (Proofs in the Paper).

1. Race-condition and Deadlock Free:

Corollary

The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of race-conditions and deadlocks

2. Implements Optimal Schedule:

Theorem

The schedule of a CFG satisfying Theorem 1 should be executed
with an algorithmic complexity of at least O (log (p)) and at most
O (n), in units of time to mutate the work, where n would be the
number of work items to be mutated on p processors. The
algorithmic order of the minimal time would be poly-logarithmic, so
within NC, therefore at least optimal.
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Basic Data-Flow Example.

Listing 1: General-Purpose use of a Thread Pool and Future.
struct res_t { int i; };

struct work type {
void process(res t &) {}
+

typedef ppd::thread pool<
pool traits::worker threads get work,pool traits::fixed size,
pool adaptor<generic traits::joinable ,posix pthreads,h heavyweight threading>
> pool_type; - - -
typedef pool type::joinable joinable;
pool type pool(2);
auto const &context=pool<<joinable()<<work type();
context—>i ;

» The work has been transferred to the thread_pool and the
resultant opaque execution_context has been captured.
» process(res_t &) is the only invasive artefact of the library
for this use-case.
» The dereference of the proxy conceals the implicit
synchronisation:

> obviously a data-flow operation,
> an implementation of the split-phase constraint.
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Data-Parallel Example: map-reduce as accumulate.

Listing 2: Accumulate with a Thread Pool and Future.

typedef ppd::thread pool<
pool traits::worker threads get work,pool traits::fixed size,
pool adaptor<generic traits::joinable ,posix pthreads,h heavyweight threading>
> pool_type; - - -
typedef ppd::safe colln<
vector<int >,lock traits::critical section lock type
> vtr colln t; - - - -
typedef pool type::joinable joinable;
vtr colln t v; v.push back(1l); v.push back(2);
auto const &context=p30|<<joinab|e() -
<<pool.accumulate(v,1,std:: plus<vtr colln t::value type >());
assert (xcontext==4); - - -

» An implementation might:

» distribute sub-ranges of the safe-colln, within the
thread_pool, performing the mutations sequentially within
the sub-ranges, without any locking,

» compute the final result by combining the intermediate results,
the implementation providing suitable locking.

» The lock-type of the safe_colln:

» indicates EREW semantics obeyed for access to the collection,
» released when all of the mutations have completed.
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Operation of accumulate.

main()

s
v
h

the C+4++ entry-point for the program,

accumulate & distribute_root the root-node of the transferred algorithm,
distribute
- internally
- leaf nodes

distributed the input collection recursively within the graph,
performed the mutation upon the sub-range.

sequential, shown for exposition purposes only,

vertical, mutation performed by thread within thread_pool.

horizontal, mutation performed by a thread spawned within an execution_context.

Ensures that sufficient free threads available for fixed_size thread_pools.
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Discussion.

» A DSEL has been formulated:

» that targets general purpose threading using both data-flow
and data-parallel constructs,

» ensures there should be no deadlocks and race-conditions with
guarantees regarding the algorithmic complexity,

» and assists with debugging any use of it.

» The choice of C++ as a host language was not special.

» Result should be no surprise: consider the work done relating
to auto-parallelizing compilers.

» No need to learn a new programming language, nor change to
a novel compiler.

» Not a panacea: program must be written in a data-flow style.
» Expose estimate of threading costs.

» Testing the performance with SPEC2006 could be investigated.

» Perhaps on alternative architectures, GPUs, APUs, etc.
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