
A Domain-Specific Embedded Language for
Programming Parallel Architectures.

Distributed Computing and Applications to Business,
Engineering and Science

September 2013.

Jason McGuiness
& Colin Egan

University of Hertfordshire
Copyright © Jason McGuiness, 2013.

dcabes2013@count-zero.ltd.uk
http://libjmmcg.sf.net/

mailto:dcabes2013@count-zero.ltd.uk
http://libjmmcg.sf.net/

Sequence of Presentation.

I A very pragmatic, practical basis to the talk.
I An introduction: why I am here.
I Why do we need & how do we manage multiple threads?
I Propose a DSEL to enable parallelism.
I Describe the grammar, give resultant theorems.
I Examples, and their motivation.
I Discussion.

2 / 15

Introduction.
Why yet another thread-library presentation?

I Because we still find it hard to write multi-threaded programs
correctly.

I According to programming folklore.

I We haven’t successfully replaced the von Neumann
architecture:

I Stored program architectures are still prevalent.
I Companies don’t like to change their compilers.
I People don’t like to recompile their programs to run on the

latest architectures.

I The memory wall still affects us:
I The CPU-instruction retirement rate, i.e. rate at which

programs require and generate data, exceeds the the memory
bandwidth - a by product of Moore’s Law.

I Modern architectures add extra cores to CPUs, in this
instance, extra memory buses which feed into those cores.

3 / 15

A Quick Review of Related Threading Models:
I Compiler-based such as Erlang, UPC or HPF.

I Corollary: companies/people don’t like to change their
programming language.

I Profusion of library-based solutions such as Posix Threads and
OpenMP, Boost.Threads:

I Don’t have to change the language, nor compiler!
I Suffer from inheritance anomalies & related issue of entangling

the thread-safety, thread scheduling and business logic.
I Each program becomes bespoke, requiring re-testing for

threading and business logic issues.
I Debugging: very hard, an open area of research.

I Intel’s TBB or Cilk.
I Have limited grammars: Cilk - simple data-flow model, TBB -

complex, but invasive API.

I The question of how to implement multi-threaded debuggers
correctly an open question.

I Race conditions commonly “disappear” in the debugger...
4 / 15

The DSEL to Assist Parallelism.

Should have the following properties:
I Target general purpose threading, defined as scheduling where

conditionals or loop-bounds may not be computed at
compile-time, nor memoized.

I Support both data-flow and data-parallel constructs succinctly
and naturally within the host language.

I Provide guarantees regarding:
I deadlocks and race-conditions,
I the algorithmic complexity of any parallel schedule

implemented with it.

I Assist in debugging any use of it.
I Example implementation uses C++ as the host language, so

more likely to be used in business.

5 / 15

Grammar Overview: Part 1: thread-pool-type.
thread-pool-type → thread_pool work-policy size-policy pool-adaptor

I A thread_pool would contain a collection of threads, which may differ from the number of
physical cores.

work-policy → worker_threads_get_work | one_thread_distributes

I The library should implement the classic work-stealing or master-slave work
sharing algorithms.

size-policy → fixed_size | tracks_to_max | infinite

I The size-policy combined with the threading-model could be used to
optimize the implementation of the thread-pool-type.

pool-adaptor → joinability api-type threading-model priority-modeopt comparatoropt
joinability → joinable | nonjoinable

I The joinability type has been provided to allow for optimizations of the
thread-pool-type.

api-type → posix_pthreads | IBM_cyclops | ... omitted for brevity
threading-model → sequential_mode | heavyweight_threading | lightweight_threading

I This specifier provides a coarse representation of the various
implementations of threading in the many architectures.

priority-mode → normal_fifodef | prioritized_queue

I The prioritized_queue would allow specification of whether certain
instances of work-to-be-mutated could be mutated before other instances
according to the specified comparator.

comparator → std::lessdef

I A binary function-type that would be used to specify a strict weak-ordering
on the elements within the prioritized_queue.

6 / 15

Grammar Overview: Part 2: other types.
The thread-pool-type should define further terminals for programming convenience:

execution_context: An opaque type of future that a transfer returns and a proxy to the result_type
that the mutation creates.

I Access to the instance of the result_type implicitly causes the calling
thread to wait until the mutation has been completed: a data-flow
operation.

I Implementations of execution_context must specifically prohibit: aliasing
instances of these types, copying instances of these types and assigning
instances of these types.

joinable: A modifier for transferring work-to-be-mutated into an instance of
thread-pool-type, a data-flow operation.

nonjoinable: Another modifier for transferring work-to-be-mutated into an instance of
thread-pool-type, a data-flow operation.

safe-colln → safe_colln collection-type lock-type

I This adaptor wraps the collection-type and lock-type in one object; also providing some
thread-safe operations upon and access to the underlying collection.

lock-type → critical_section_lock_type | read_write | read_decaying_write

I A critical_section_lock_type would be a single-reader, single-writer lock,
a simulation of EREW semantics.

I A read_write lock would be a multi-readers, single-write lock, a simulation
of CREW semantics.

I A read_decaying_write lock would be a specialization of a read_write lock
that also implements atomic transformation of a write-lock into a read-lock.

collection-type: A standard collection such as an STL-style list or vector, etc.

7 / 15

Grammar Overview: Part 3: Rewrite Rules.

Transfer of work-to-be-mutated into an instance of thread-pool-type has been defined as follows:

transfer-future → execution-context-resultopt thread-pool-type transfer-operation

execution-context-result → execution_context <<

I An execution_context should be created only via a transfer of
work-to-be-mutated with the joinable modifier into a thread_pool defined
with the joinable joinability type.

I It must be an error to transfer work into a thread_pool that has been
defined using the nonjoinable type.

I An execution_context should not be creatable without transferring work, so
guaranteed to contain an instance of result_type of a mutation, implying
data-flow like operation.

transfer-operation → transfer-modifier-operationopt transfer-data-operation

transfer-modifier-operation → << transfer-modifier

transfer-modifier → joinable | nonjoinable
transfer-data-operation → << transfer-data

transfer-data → work-to-be-mutated | data-parallel-algorithm

The data-parallel-algorithms have been defined as follows:

data-parallel-algorithm → accumulate | ... omitted for brevity

I The style and arguments of the data-parallel-algorithms should be similar to
those of the STL. Specifically they should all take a safe-colln as an
argument to specify the range and functors as specified within the STL.

8 / 15

Properties of the DSEL.

Due to the restricted properties of the execution contexts and the
thread pools a few important results arise:
1. The thread schedule created is only an acyclic, directed graph:

a tree.
2. From this property we have proved that the schedule

generated is deadlock and race-condition free.
3. Moreover in implementing the STL-style algorithms those

implementations are efficient, i.e. there are provable bounds
on both the execution time and minimum number of
processors required to achieve that time.

9 / 15

Initial Theorems (Proofs in the Paper).

1. CFG is a tree:

Theorem
The CFG of any program must be an acyclic directed graph
comprising of at least one singly-rooted tree, but may contain
multiple singly-rooted, independent, trees.
2. Race-condition Free:

Theorem
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of race-conditions.
3. Deadlock Free:

Theorem
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of deadlocks.

10 / 15

Final Theorems (Proofs in the Paper).

1. Race-condition and Deadlock Free:

Corollary
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of race-conditions and deadlocks
2. Implements Optimal Schedule:

Theorem
The schedule of a CFG satisfying Theorem 1 should be executed
with an algorithmic complexity of at least O (log (p)) and at most
O (n), in units of time to mutate the work, where n would be the
number of work items to be mutated on p processors. The
algorithmic order of the minimal time would be poly-logarithmic, so
within NC, therefore at least optimal.

11 / 15

Basic Data-Flow Example.

Listing 1: General-Purpose use of a Thread Pool and Future.
s t r u c t res_t { i n t i ; } ;
s t r u c t work_type {

vo i d p r o c e s s (res_t &) {}
} ;
t y p ed e f ppd : : thread_pool<

p o o l_ t r a i t s : : worker_threads_get_work , p o o l_ t r a i t s : : f i x e d_s i z e ,
pool_adaptor<g e n e r i c_ t r a i t s : : j o i n a b l e , pos i x_pthreads , heavywe ight_thread ing>

> pool_type ;
t y p ed e f poo l_type : : j o i n a b l e j o i n a b l e ;
poo l_type poo l (2) ;
auto con s t &con t e x t=pool<<j o i n a b l e ()<<work_type () ;
contex t−>i ;

I The work has been transferred to the thread_pool and the
resultant opaque execution_context has been captured.

I process(res_t &) is the only invasive artefact of the library
for this use-case.

I The dereference of the proxy conceals the implicit
synchronisation:

I obviously a data-flow operation,
I an implementation of the split-phase constraint.

12 / 15

Data-Parallel Example: map-reduce as accumulate.

Listing 2: Accumulate with a Thread Pool and Future.
t y p ed e f ppd : : thread_pool<

p o o l_ t r a i t s : : worker_threads_get_work , p o o l_ t r a i t s : : f i x e d_s i z e ,
pool_adaptor<g e n e r i c_ t r a i t s : : j o i n a b l e , pos i x_pthreads , heavywe ight_thread ing>

> pool_type ;
t y p ed e f ppd : : s a f e_co l l n <

vec to r<in t >, l o c k_ t r a i t s : : c r i t i c a l_ s e c t i o n_ l o c k_ t y p e
> vt r_co l l n_t ;
t y p ed e f poo l_type : : j o i n a b l e j o i n a b l e ;
v t r_co l l n_t v ; v . push_back (1) ; v . push_back (2) ;
auto con s t &con t e x t=pool<<j o i n a b l e ()

<<poo l . accumulate (v , 1 , s t d : : p lu s<v t r_co l l n_t : : va lue_type >()) ;
a s s e r t (∗ con t e x t ==4);

I An implementation might:
I distribute sub-ranges of the safe-colln, within the

thread_pool, performing the mutations sequentially within
the sub-ranges, without any locking,

I compute the final result by combining the intermediate results,
the implementation providing suitable locking.

I The lock-type of the safe_colln:
I indicates EREW semantics obeyed for access to the collection,
I released when all of the mutations have completed.

13 / 15

Operation of accumulate.
main()

accumulate

v

distribute_root

s

distribute

h

distribute

v

distribute

h

distribute

v

distribute

v

distribute

v

distribute

h

distribute

v

distribute

v

distribute

v

distribute

v

distribute

v

distribute

v

distribute

v

main() the C++ entry-point for the program,
accumulate & distribute_root the root-node of the transferred algorithm,

distribute
- internally distributed the input collection recursively within the graph,
- leaf nodes performed the mutation upon the sub-range.

s sequential, shown for exposition purposes only,
v vertical, mutation performed by thread within thread_pool.
h horizontal, mutation performed by a thread spawned within an execution_context.

Ensures that sufficient free threads available for fixed_size thread_pools.
14 / 15

Discussion.

I A DSEL has been formulated:
I that targets general purpose threading using both data-flow

and data-parallel constructs,
I ensures there should be no deadlocks and race-conditions with

guarantees regarding the algorithmic complexity,
I and assists with debugging any use of it.

I The choice of C++ as a host language was not special.
I Result should be no surprise: consider the work done relating

to auto-parallelizing compilers.

I No need to learn a new programming language, nor change to
a novel compiler.

I Not a panacea: program must be written in a data-flow style.
I Expose estimate of threading costs.

I Testing the performance with SPEC2006 could be investigated.
I Perhaps on alternative architectures, GPUs, APUs, etc.

15 / 15

