A Domain-Specific Embedded Language for
Programming Parallel Architectures.

Distributed Computing and Applications to Business,
Engineering and Science
September 2013.

Jason M€Guiness
& Colin Egan
University of Hertfordshire
Copyright (©) Jason M“Guiness, 2013.

dcabes2013@count-zero.ltd.uk
http://libjmmcg.sf.net/

mailto:dcabes2013@count-zero.ltd.uk
http://libjmmcg.sf.net/

Sequence of Presentation.

» A very pragmatic, practical basis to the talk.

» An introduction: why | am here.

» Why do we need & how do we manage multiple threads?
» Propose a DSEL to enable parallelism.

» Describe the grammar, give resultant theorems.

» Examples, and their motivation.

» Discussion.

2577 1R

Introduction.
Why yet another thread-library presentation?
» Because we still find it hard to write multi-threaded programs
correctly.

» According to programming folklore.

» We haven't successfully replaced the von Neumann
architecture:

» Stored program architectures are still prevalent.

» Companies don't like to change their compilers.
> People don't like to recompile their programs to run on the
latest architectures.

» The memory wall still affects us:

» The CPU-instruction retirement rate, i.e. rate at which
programs require and generate data, exceeds the the memory
bandwidth - a by product of Moore's Law.

» Modern architectures add extra cores to CPUs, in this
instance, extra memory buses which feed into those cores.

2/ 1

A Quick Review of Related Threading Models:
» Compiler-based such as Erlang, UPC or HPF.

» Corollary: companies/people don't like to change their
programming language.
» Profusion of library-based solutions such as Posix Threads and
OpenMP, Boost. Threads:
» Don't have to change the language, nor compiler!
» Suffer from inheritance anomalies & related issue of entangling
the thread-safety, thread scheduling and business logic.
» Each program becomes bespoke, requiring re-testing for

threading and business logic issues.
» Debugging: very hard, an open area of research.

» Intel's TBB or Cilk.

» Have limited grammars: Cilk - simple data-flow model, TBB -
complex, but invasive API.
» The question of how to implement multi-threaded debuggers
correctly an open question.

» Race conditions commonly “disappear” in the debugger...
A7 1w

The DSEL to Assist Parallelism.

Should have the following properties:

>

Target general purpose threading, defined as scheduling where
conditionals or loop-bounds may not be computed at
compile-time, nor memoized.

Support both data-flow and data-parallel constructs succinctly
and naturally within the host language.

Provide guarantees regarding:

» deadlocks and race-conditions,
» the algorithmic complexity of any parallel schedule
implemented with it.

Assist in debugging any use of it.

Example implementation uses C++ as the host language, so
more likely to be used in business.

R/18

Grammar Overview: Part 1: thread-pool-type.

thread-pool-type — thread_pool work-policy size-policy pool-adaptor

P A thread_pool would contain a collection of threads, which may differ from the number of
physical cores.

work-policy — worker_threads_get_work | one_thread_distributes

P The library should implement the classic work-stealing or master-slave work
sharing algorithms.

size-policy — fixed_size | tracks_to_max | infinite

P The size-policy combined with the threading-model could be used to
optimize the implementation of the thread-pool-type.
pool-adaptor — joinability api-type threading-model priority-modegpt comparatorept
Jjoinability — joinable | nonjoinable
P The joinability type has been provided to allow for optimizations of the
thread-pool-type.
api-type — posix_pthreads | IBM_cyclops | ... omitted for brevity
threading-model — sequential_mode | heavyweight_threading | lightweight_threading
P This specifier provides a coarse representation of the various
implementations of threading in the many architectures.
priority-mode — normal_fifoy_r | prioritized_queue
P The prioritized_queue would allow specification of whether certain

instances of work-to-be-mutated could be mutated before other instances
according to the specified comparator.

comparator — std: :lessdef

P A binary function-type that would be used to specify a strict weak-ordering
on the elements within the prioritized_queue.

A& 71w

Grammar Overview: Part 2: other types.

The thread-pool-type should define further terminals for programming convenience:

execution_context: An opaque type of future that a transfer returns and a proxy to the result_type
that the mutation creates.

P Access to the instance of the result_type implicitly causes the calling
thread to wait until the mutation has been completed: a data-flow
operation.

P Implementations of execution_context must specifically prohibit: aliasing
instances of these types, copying instances of these types and assigning
instances of these types.

joinable: A modifier for transferring work-to-be-mutated into an instance of
thread-pool-type, a data-flow operation.

nonjoinable: Another modifier for transferring work-to-be-mutated into an instance of
thread-pool-type, a data-flow operation.

safe-colln — safe_colln collection-type lock-type

P This adaptor wraps the collection-type and lock-type in one object; also providing some
thread-safe operations upon and access to the underlying collection.

lock-type — critical_section_lock_type | read_write | read_decaying write

P A critical_section_lock_type would be a single-reader, single-writer lock,
a simulation of EREW semantics.

P A read_write lock would be a multi-readers, single-write lock, a simulation
of CREW semantics.

P A read_decaying_write lock would be a specialization of a read_write lock
that also implements atomic transformation of a write-lock into a read-lock.

collection-type: A standard collection such as an STL-style list or vector, etc.

271

Grammar Overview: Part 3: Rewrite Rules.

Transfer of work-to-be-mutated into an instance of thread-pool-type has been defined as follows:

transfer-future — execution-context-resultopt thread-pool-type transfer-operation

execution-context-result — execution_context <<
P An execution_context should be created only via a transfer of
work-to-be-mutated with the joinable modifier into a thread_pool defined
with the joinable joinability type.
It must be an error to transfer work into a thread_pool that has been
defined using the nonjoinable type.
An execution_context should not be creatable without transferring work, so
guaranteed to contain an instance of result_type of a mutation, implying
data-flow like operation.
transfer-operation — transfer-modifier-operationopt transfer-data-operation
transfer-modifier-operation — << transfer-modifier
transfer-modifier — joinable | nonjoinable

transfer-data-operation — << transfer-data

transfer-data — work-to-be-mutated | data-parallel-algorithm
The data-parallel-algorithms have been defined as follows:
data-parallel-algorithm — accumulate | ... omitted for brevity
P The style and arguments of the data-parallel-algorithms should be similar to

those of the STL. Specifically they should all take a safe-colln as an
argument to specify the range and functors as specified within the STL.

Q1R

Properties of the DSEL.

Due to the restricted properties of the execution contexts and the
thread pools a few important results arise:

1. The thread schedule created is only an acyclic, directed graph:
a tree.

2. From this property we have proved that the schedule
generated is deadlock and race-condition free.

3. Moreover in implementing the STL-style algorithms those
implementations are efficient, i.e. there are provable bounds
on both the execution time and minimum number of
processors required to achieve that time.

o071

Initial Theorems (Proofs in the Paper).

1. CFG is a tree:

Theorem

The CFG of any program must be an acyclic directed graph
comprising of at least one singly-rooted tree, but may contain
multiple singly-rooted, independent, trees.

2. Race-condition Free:

Theorem
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of race-conditions.

3. Deadlock Free:

Theorem
The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of deadlocks.

107 1%

Final Theorems (Proofs in the Paper).

1. Race-condition and Deadlock Free:

Corollary

The schedule of a CFG satisfying Theorem 1 should be guaranteed
to be free of race-conditions and deadlocks

2. Implements Optimal Schedule:

Theorem

The schedule of a CFG satisfying Theorem 1 should be executed
with an algorithmic complexity of at least O (log (p)) and at most
O (n), in units of time to mutate the work, where n would be the
number of work items to be mutated on p processors. The
algorithmic order of the minimal time would be poly-logarithmic, so
within NC, therefore at least optimal.

1177 1%

Basic Data-Flow Example.

Listing 1: General-Purpose use of a Thread Pool and Future.
struct res_t { int i; };

struct work type {
void process(res t &) {}
+

typedef ppd::thread pool<
pool traits::worker threads get work,pool traits::fixed size,
pool adaptor<generic traits::joinable ,posix pthreads,h heavyweight threading>
> pool_type; - - -
typedef pool type::joinable joinable;
pool type pool(2);
auto const &context=pool<<joinable()<<work type();
context—>i ;

» The work has been transferred to the thread_pool and the
resultant opaque execution_context has been captured.
» process(res_t &) is the only invasive artefact of the library
for this use-case.
» The dereference of the proxy conceals the implicit
synchronisation:

> obviously a data-flow operation,
> an implementation of the split-phase constraint.

127718

Data-Parallel Example: map-reduce as accumulate.

Listing 2: Accumulate with a Thread Pool and Future.

typedef ppd::thread pool<
pool traits::worker threads get work,pool traits::fixed size,
pool adaptor<generic traits::joinable ,posix pthreads,h heavyweight threading>
> pool_type; - - -
typedef ppd::safe colln<
vector<int >,lock traits::critical section lock type
> vtr colln t; - - - -
typedef pool type::joinable joinable;
vtr colln t v; v.push back(1l); v.push back(2);
auto const &context=p30|<<joinab|e() -
<<pool.accumulate(v,1,std:: plus<vtr colln t::value type >());
assert (xcontext==4); - - -

» An implementation might:

» distribute sub-ranges of the safe-colln, within the
thread_pool, performing the mutations sequentially within
the sub-ranges, without any locking,

» compute the final result by combining the intermediate results,
the implementation providing suitable locking.

» The lock-type of the safe_colln:

» indicates EREW semantics obeyed for access to the collection,
» released when all of the mutations have completed.

12771

Operation of accumulate.

main()

s
v
h

the C+4++ entry-point for the program,

accumulate & distribute_root the root-node of the transferred algorithm,
distribute
- internally
- leaf nodes

distributed the input collection recursively within the graph,
performed the mutation upon the sub-range.

sequential, shown for exposition purposes only,

vertical, mutation performed by thread within thread_pool.

horizontal, mutation performed by a thread spawned within an execution_context.

Ensures that sufficient free threads available for fixed_size thread_pools.

1477 1w

Discussion.

» A DSEL has been formulated:

» that targets general purpose threading using both data-flow
and data-parallel constructs,

» ensures there should be no deadlocks and race-conditions with
guarantees regarding the algorithmic complexity,

» and assists with debugging any use of it.

» The choice of C++ as a host language was not special.

» Result should be no surprise: consider the work done relating
to auto-parallelizing compilers.

» No need to learn a new programming language, nor change to
a novel compiler.

» Not a panacea: program must be written in a data-flow style.
» Expose estimate of threading costs.

» Testing the performance with SPEC2006 could be investigated.

» Perhaps on alternative architectures, GPUs, APUs, etc.

158718

